
 

 
What the Hack: Indexing & Slicing | Episode 7 Challenges Solutions 

 
Finish testing your knowledge? Take a look at some solutions to the challenges! 

 
Challenge 1: Another Secret Message! Decode It With Slicing! 
 
#first, save the secret message into a variable 

secretMessage = 'joalGak owrooi;sdlkd weiJr hojasbd;o! Diok;jsdkl;ajdoi skjdS 
faCslikj ioweojw*e k' 

 

###The start index 

##"This secret message begins at the index that is the same as the number of 

times a semicolon (;)" 

#this means that we need to count how many times a semicolon appears in our 

secret message! 

#for this, we can use the .count() method 

#pass in the semicolon enclosed by quotation marks as a string to the .count() 

method, and print it out to see what the number is! 

print(secretMessage.count(';')) 
#we can save the result of this .count() method into a variable, let's call it 

startIndex 

startIndex = secretMessage.count(';') 
 

###The stop index 

##"(This secret message) ends at where the exclamation mark (!) is" 

#this means that we need to find the index for the character ! in our gibberish 

string! 

#we can do that by using the .index() method 

#pass in the exclamation mark (!) enclosed by quotation marks as a string to the 

.index() method, and print it out to see what the number is! 

print(secretMessage.index('!')) 
#but also, remember when doing slicing, the stop index is the index right after 

where the slicing actually stops! 

#so, we need to add 1 to the index of the exclamation mark 

#we can save the result of this .index() method plus 1 into a variable, let's 

call it stopIndex 

stopIndex = secretMessage.index('!') + 1 

 



 

 

###The skip value 

##"The characters that make up the actual message are embedded in this gibberish 

string in a specific pattern: they have a number of characters in between them." 

#This means that we need to skip a number of characters when we do slicing! 

##"How many characters in between them? I don’t know, maybe 1, maybe 2, maybe 3, 

maybe 4, maybe 5." 

#this means that we have 5 numbers to try for the skip value: 1, 2, 3, 4 and 5! 

 

#while we can definitely try each number one by one by changing the number 

everytime we run the code, utilizing a for loop or a while loop can automate this 

task for us, meaning that we can ask the computer to do the job and we can just 

relax and see the result! 

 

##for loop solution 

#let's see a solution with for loop 

#remember in a for loop, we need to specify something to loop through. In our 

case, we need to specify a range of number (1,2,3,4,5). We can do that using the 

range() function in Python! remember that the second number that we give to the 

range function needs to be 1 value greater than the last number that we want to 

have in this range 

#remember a for loop also needs a variable that will loop through, or iterate 

through the range of numbers that we have. We can call it skipValue 

for skipValue in range(1,6): 
 #each time skipValue loops through a number, we want it to try it as the skip 

value for slicing, and we want it to print the message out and see if this is the 

correct skip value or not 

 #we can slice the secret message using the start index, stop index and the skip 

value that we have 

 #we can save the sliced string into a variable called decodedMessage 

 decodedMessage = secretMessage[startIndex:stopIndex:skipValue] 

 #now let's print out the skip value that the for loop tries for us 

 print("Skip Value: " + str(skipValue)) 
 #and then print out the decoded message when our for loop tried that skpi value 

for us 

 print(decodedMessage) 
 #we can print a blank line of message, to make the terminal a little cleaner to 

look at 

 



 

 print("") 
 

##while loop solution 

#what we did with a for loop, we can achieve it with a while loop as well! let's 

take a look! 

#remember when using a while loop, we need to declare a variable to contain a 

start value for our looping. 

#the only thing that we need to change when we want to try to decode the message, 

is the skip value 

#because we want to try the skip value of 1 first, we can assign our variable 

skipValue an integer 1 

skipValue = 1 
#remember for a while loop, we only need to specify a condition before the 

compile 

#here, because the spirit of computer science mentioned that the skip value can 

be 1, 2, 3, 4, 5, so we can set 5 to be the largest number that we want our while 

loop to try for us! here we say, while the skipValue is less than or equal to 5, 

keep trying. If the skipValue becomes greater than 5, stop trying. 

while skipValue <= 5: 
 #here, let's slice the secret message with the startIndex, stopIndex and the 

skipValue 

 #and save it into the decodedMessage variable 

 decodedMessage = secretMessage[startIndex:stopIndex:skipValue] 

 #now let's print out the skip value that the for loop tries for us 

 print("Skip Value: " + str(skipValue)) 
 #and then print out the decoded message when our for loop tried that skpi value 

for us 

 print(decodedMessage) 
 #we can print a blank line of message, to make the terminal a little cleaner to 

look at 

 print("") 
 #the last step in a while loop is to change the value of the variable in the 

condition. In our case, we need to increase the skipValue by 1, so that in the 

next iteration, the while loop will try the next integer as the skip value when 

slicing for us 

 skipValue += 1 
 

#Have a look at the result, and, what was the secret message? 

 


