

What the Hack: Binary & ASCII | Episode 9 Challenges Solutions

Finish testing your knowledge? Take a look at some solutions to the challenges!

Challenge 1: Let’s read the numbers from our computer’s memory!

For the solution for this challenge, let’s use the table below to guide us through the calculation!

The first row “Base” tells us what power is the base raised to; the second row “Value” shows us the actual
numeric value of that base; the third row “Binary” is where we line up our binary numbers; and the fourth
row “Switch” tells us whether the switch is on or off in our computer’s memory.

Remember: if the switch is on, then we add the number; if the switch is off, then we don't!

1. 01010111

Base 27 26 25 24 23 22 21 20

Value 128 64 32 16 8 4 2 1

Binary 0 1 0 1 0 1 1 1

Switch OFF ON OFF ON OFF ON ON ON

In this table, we see that 64, 16, 4, 2, 1 are on. Let’s add them up together:

64 + 16 + 4 + 2 + 1 = 87!

This binary number 01010111 represents the number 87 in our computer’s memory!

2. 0101001010010101

This binary number is longer than 8 bits, but no problem! Doesn’t matter how long the binary number is,
from right to left, starting from the power of 0, you simply raise the base 2 to the power of the next higher
integer! For a binary number that has 16 bits, the highest power that we raise the base to is 15.

Base 215 214 213 212 211 210 29 28

Value 32768 16384 8192 4096 2048 1024 512 256

Binary 0 1 0 1 0 0 1 0

Switch OFF ON OFF ON OFF OFF ON OFF

Base 27 26 25 24 23 22 21 20

Value 128 64 32 16 8 4 2 1

Binary 1 0 0 1 0 1 0 1

Switch ON OFF OFF ON OFF ON OFF ON

We see that the numbers 16384, 4096, 512, 128, 16, 4 and 1 are on. Let’s add them up!

16384 + 4096 + 512 + 128 + 16 + 4 + 1 = 21,141

This is a big number! But it’s no problem for our computer to store and represent as binary numbers!

3. 101001011010110110010100

This number is even bigger than the one in part 2! But now that you know the concept of how binary
numbers work, you know that you can figure out what this number is by simply raising the base 2 to
higher power! Let’s take a look!

Base 223 222 221 220 219 218 217 216

Value 8388608 4194304 2097152 1048576 524288 262144 131072 65536

Binary 1 0 1 0 0 1 0 1

Switch ON OFF ON OFF OFF ON OFF ON

Base 215 214 213 212 211 210 29 28

Value 32768 16384 8192 4096 2048 1024 512 256

Binary 1 0 1 0 1 1 0 1

Switch ON OFF ON OFF ON ON OFF ON

Base 27 26 25 24 23 22 21 20

Value 128 64 32 16 8 4 2 1

Binary 1 0 0 1 0 1 0 0

Switch ON OFF OFF ON OFF ON OFF OFF

We’ve got 8388608, 2097152, 262144, 65536, 32768, 8192, 2048, 1024, 256, 128, 16 and 4 on!

That is a lot of numbers, let’s add them up!

8388608 + 2097152 + 262144 + 65536 + 32768 + 8192 + 2048 + 1024 + 256 + 128 + 16 + 4 =
10,857,876

Now that is a super huge number! But our computer can store even larger number than this, by using
more bits in its memory and raising 2 to the power of larger integer!

Challenge 2: Tell our computer a number!

For the solution of this challenge, let’s utilize the table in challenge 1, but in a slightly different way!

The first row of the first table “Base” shows us what the base 2 is raised to the power of; the second row
“Value” shows us the actual value when two is raised to the power of an integer, note that it is also the
value inside the bit.

1. 27

Let’s look through the values, and decide whether we will need the numbers in our calculation or not!

Base 27 26 25 24 23 22 21 20

Value 128 64 32 16 8 4 2 1

The number 128 is much much larger than our number 27, so we won’t need it. Let’s note down 0 for this
bit; The number 64 and 32 are both larger than our number 27, so we will also note down 0 for those bits.

The number 16 is less than 27, which means we will need to use this number. Let’s note down 1 for this
bit. Before we continue to the next bit, we need to first subtract 16 from 27!

27 - 16 = 11

and we will continue to the next bit with the number 11.

The number 8 is less than our number 11, which means we will need it. Let’s note down
1 for this bit! And do our subtraction before we continue!

11 - 8 = 3

The next bit has the number 4, which is larger than 3. We don’t need it, so let’s note down 0 for this bit!

The next bit is 2, which is less than 3, so let’s note down 1 for this bit and do our subtraction!

3 - 2 = 1

and the next bit has exactly the number 1, so we will note down 1 for this bit too!

and with the table below, we see that 00011011 is the binary representation of the number 27!

Binary 0 0 0 1 1 0 1 1

Switch OFF OFF OFF ON ON OFF ON ON

2. 601

The number 601 is larger than the largest number that we have in our 8-bit memory, 128! What should
we do? We simply use 8 more bits in our computer’s memory for storing this number! and we will
demonstrate that using an additional table.

Base 215 214 213 212 211 210 29 28

Value 32768 16384 8192 4096 2048 1024 512 256

Let’s work off from this table first.

We see that the number 32768, 16384, 8192, 4096, 2048 and 1024 are all larger than our number 601.
This means we don’t need any of these bits, so let’s note down 0 in those bits to turn them off!

We see that 512 is less than 601, so let’s note down 1 in this bit and do our calculation!

601 - 512 = 89

With 89, we see that 256 is too big as well, so let’s note down 0 in this bit, and continue to the next table!

Binary 0 0 0 0 0 0 1 0

Switch OFF OFF OFF OFF OFF OFF ON OFF

Base 27 26 25 24 23 22 21 20

Value 128 64 32 16 8 4 2 1

In this second table, we see that 128 is larger than our number 89. Let’s note down 0 in this bit, and
continue to the next bit!

The next bit has 64, which is less than 89. Let’s note down 1 in this bit and do our subtraction.

89 - 64 = 25

With 25, we see that the next bit 32 is larger than what we have, so let’s note down 0 and continue.

The next number is 16, which is less than 25. Let’s note down 1 and do our subtraction!

25 - 16 = 9

and with 9, we see that it’s larger than the next bit, which means we will also need the next bit. Let’s note
down 1 and again do our subtraction!

9 - 8 = 1.

With 1, we see that the following 2 bits are too big, so let’s note down 0 for them.

The last bit on the table has exactly 1, so let’s note down 1, and we are done with our calculation!

Combining the binary numbers in the two tables, we see that 0000001001011001 is the binary
representation of our number 61!

Binary 0 1 0 1 1 0 0 1

Switch OFF ON OFF ON ON OFF OFF ON

3. 7474

The number 7474 seems much larger than the number 601 in part 2, but for our computer, it is actually
not much longer to write in binary representation!

Base 215 214 213 212 211 210 29 28

Value 32768 16384 8192 4096 2048 1024 512 256

Because our number 7474 isn’t larger than the largest number in this 16-bits memory, we don’t need a
3rd table that contains larger values! We can begin with this table.

We see that 32768, 16384 and 8192 are all too big for our number 7474, so let’s note down 0 to turn
these bits off.

We see that the next bit has 4096, which is less than 7474, so let’s note down 1 and do our calculation!

7474 - 4096 = 3378

With 3378, we see that we also need the next bit 2048, so let’s note down 1 and do the calculation again!

3378 - 2048 = 1330

1330 is again larger than our next bit 1024, so let’s note down 1 again and do the
calculation!

1330 - 1024 = 306

With 306, we see that the next bit is too large, so we will note down 0 and continue to the next bit.

The next bit has 256, which is less than 306. Let’s note down 1 and do our calculation!

306 - 256 = 50

And with 50, we will continue to our next table!

Binary 0 0 0 1 1 1 0 1

Switch OFF OFF OFF ON ON ON OFF ON

Base 27 26 25 24 23 22 21 20

Value 128 64 32 16 8 4 2 1

With our number 50, we see that both 128 and 64 are too big, we don’t need them. So let’s note down 0
and continue to the next bit!

The next bit has 32, which is less than 50. Let’s note down 1 and do our calculation!

50 - 32 = 18

and with 18, we will need the next bit because it is 16. Let’s note down 1 again and do the calculation!

18 - 16 = 2

with 2, we see that we don’t need any other bits except the second last bit, which has exactly the number
2. Let’s note down 1 for the second last bit and 0 for the other bits!

And that is the end of our calculation. Our number 7474 converted to binary numbers is
0001110100110010. This number looks nowhere close to 7474 in our mind, but our computer will be able
to store it in its memory in this way!

Binary 0 0 1 1 0 0 1 0

Switch OFF OFF ON ON OFF OFF OFF OFF

Challenge 3: Tell our computer a message!

As we are now converting characters into binary, we need to make use of the ASCII table!

1. “Hello”

Looking through our ASCII table, we can find that uppercase H is associated with the integer 72,
lowercase e is associated with the integer 101, lowercase l is associated with the integer 108, and
lowercase o is associated with the integer 111!

Now let’s convert all these integers into binary numbers!

Using our table in challenge 2, we can see that the integer 72 in binary representation is 01001000; and
the integer 101 in binary is 01100101; the integer 108 in binary is 01101100; and the integer 111 in binary
is 01101111.

Character ASCII integer (key) Binary Number

H 72 01001000

e 101 01100101

l 108 01101100

l 108 01101100

o 111 01101111

If we put all these binary numbers together, we get:

01001000 01100101 01101100 01101100 01101111

This is how the message “Hello” will get stored in our computer’s memory as binary numbers!

2. “What The Hack.”

Look through the ASCII table, and you will find the integer key associated with each character.

Using our binary and switches table in challenge 2, we can convert these integers into binary numbers.

The table below lists the characters, their unique ASCII integer keys and the binary numbers of those
integers! Remember that empty space and period punctuation are also characters, and they also have
specific ASCII integer keys associated with them!

Character ASCII integer (key) Binary Number

W 87 01010111

h 104 01101000

a 97 01100001

t 116 01110100

(space) 32 00100000

T 84 01010100

h 104 01101000

e 111 01100101

(space) 32 00100000

H 72 01001000

a 97 01100001

c 99 01100011

k 107 01101011

. (period punctuation) 46 00101110

Putting all the binary numbers together, we have :

01010111 01101000 01100001 01110100 00100000 01010100 01101000 01100101 00100000
01001000 01100001 01100011 01101011 00101110

And this is how the name of our series “What The Hack.” will be stored in our computer’s memory!

3. “Thank you!”

Look through the ASCII table, and you will find the integer key associated with each character.

Using our binary and switches table in challenge 2, we can convert these integers into binary numbers.

The table below lists the characters, their unique ASCII integer keys and the binary numbers of those
integers! Remember that empty space and period punctuation are also characters, and they also have
specific ASCII integer keys associated with them!

Character ASCII integer (key) Binary Number

T 84 01010100

h 104 01101000

a 97 01100001

n 110 01101110

k 107 01101011

(space) 32 00100000

y 121 01111001

o 111 01101111

u 117 01110101

! (exclamation mark) 33 00100001

Putting all the binary numbers together, we will get:

01010100 01101000 01100001 01101110 01101011 00100000 01111001 01101111 01110101
00100001

And this is how “Thank you!” will be stored in our computer’s memory! Next time when your computer
helps you do something, maybe say thank you to it in binary numbers :) !

Challenge 4: Let’s read the messages from our computer’s memory!

When working with characters using the ASCII table, we will need to separate binary numbers into bytes
(8-bits), and convert each byte into an integer, and translate the integer back to the character using the
ASCII table.

1. 010010000110100100100001

Let’s first break down this string of binary numbers into bytes:

01001000 01101001 00100001

Then, let’s convert them back into decimal numbers, and then use these numbers to look up the
characters in the ASCII table!

The table below shows the binary numbers, what decimal numbers they represent, and what characters
those decimal numbers are associated with in the ASCII table.

Binary Number Decimal Number (ASCII key) Character

01001000 72 H

01101001 105 i

00100001 33 !

Putting all the characters together, we have :

Hi!

The binary numbers 01001000 01101001 00100001 represent the message “Hi!” in our computer’s
memory!

2. 01000001011101110110010101110011011011110110110101100101

Let’s first break down this string of binary numbers into bytes:

01000001 01110111 01100101 01110011 01101111 01101101 01100101

Then, let’s convert them back into decimal numbers, and then use these numbers to look up the
characters in the ASCII table!

The table below shows the binary numbers, what decimal numbers they represent, and what characters
those decimal numbers are associated with in the ASCII table.

Binary Number Decimal Number (ASCII key) Character

01000001 65 A

01110111 119 w

01100101 101 e

01110011 115 s

01101111 111 o

01101101 109 m

01100101 101 e

Putting the characters together, we have :

Awesome

This string of binary numbers 01000001 01110111 01100101 01110011 01101111 01101101 01100101
is how our computer will store the word Awesome!

3. 010110010110111101110101001000000110000101110010011001010010000001110111011001
01011011000110001101101111011011010110010100100001

Let’s first break down this string of binary numbers into bytes:

01011001 01101111 01110101 00100000 01100001 01110010 01100101 00100000 01110111
01100101 01101100 01100011 01101111 01101101 01100101 00100001

Then, let’s convert them back into decimal numbers, and then use these numbers to look up the
characters in the ASCII table!

The table below shows the binary numbers, what decimal numbers they represent, and what characters
those decimal numbers are associated with in the ASCII table.

Binary Number Decimal Number (ASCII key) Character

01011001 89 Y

01101111 111 o

01110101 117 u

00100000 32 (space)

01100001 97 a

01110010 114 r

01100101 101 e

00100000 32 (space)

01110111 119 w

01100101 101 e

01101100 108 l

01100011 99 c

01101111 111 o

01101101 109 m

01100101 101 e

00100001 33 ! (exclamation mark)

Putting all the characters together, you will see :

You are welcome!

this long string of binary numbers
010110010110111101110101001000000110000101110010011001010010000001110111011001010110
11000110001101101111011011010110010100100001 is how our computer represents the message
“You are welcome!” Maybe when you say “Thank you!” to your computer in binary numbers, this is what it
will respond back to you! :)

